抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

伪共享与缓存行

CPU缓存架构

CPU 是计算机的心脏,所有运算和程序最终都要由它来执行。

主内存(RAM)是数据存放的地方,CPU 和主内存之间有好几级缓存,因为即使直接访问主内存也是非常慢的。

CPU的速度要远远大于内存的速度,为了解决这个问题,CPU引入了三级缓存:L1,L2和L3三个级别,L1最靠近CPU,L2次之,L3离CPU最远,L3之后才是主存。速度是L1>L2>L3>主存。越靠近CPU的容量越小。CPU获取数据会依次从三级缓存中查找。

当CPU要读取一个数据时,首先从一级缓存中查找,如果没有找到再从二级缓存中查找,如果还是没有就从三级缓存或内存中查找。一般来说,每级缓存的命中率大概都在80%左右,也就是说全部数据量的80%都可以在一级缓存中找到,只剩下20%的总数据量才需要从二级缓存、三级缓存或内存中读取,由此可见一级缓存是整个CPU缓存架构中最为重要的部分。

下表是一些缓存未命中的消耗数据:

从CPU到 大约需要的CPU周期 大约需要的时间
主存 约60-80ns
QPI总线 约20ns
L3 cache 约40-45cycles 约15ns
L2 cache 约10cycles 约3ns
L1 cache 约3-4cycles 约1ns
寄存器 1cycle

MESI协议

缓存行状态

CPU的缓存是以缓存行(cache line)为单位的,MESI协议描述了多核处理器中一个缓存行的状态。在MESI协议中,每个缓存行有4个状态,分别是:

  • M(修改,Modified):本地处理器已经修改缓存行,即是脏行,它的内容与内存中的内容不一样,并且此 cache 只有本地一个拷贝(专有);
  • E(专有,Exclusive):缓存行内容和内存中的一样,而且其它处理器都没有这行数据;
  • S(共享,Shared):缓存行内容和内存中的一样, 有可能其它处理器也存在此缓存行的拷贝;
  • I(无效,Invalid):缓存行失效, 不能使用。

缓存行的E状态如下图:

此时只有core1访问缓存行,它的缓存行的状态为E,表示core1独占。

缓存行的S状态如下图:

此时core1和core2都会访问缓存行,他们的缓存行状态为S,表示缓存行处于共享状态。

缓存行的M和I状态如下图:

此时core1修改了缓存行,因此core1的缓存行状态为M,代表已经修改,而core2的缓存行状态为I,代表已经失效,需要从主存中读取。

缓存行状态转换

​ 在MESI协议中,每个Cache的Cache控制器不仅知道自己的读写操作,而且也监听(snoop)其它Cache的读写操作。每个Cache line所处的状态根据本核和其它核的读写操作在4个状态间进行迁移。MESI协议状态迁移图如下:

初始:一开始时,缓存行没有加载任何数据,所以它处于 I 状态。

本地写(Local Write):如果本地处理器写数据至处于 I 状态的缓存行,则缓存行的状态变成 M。

本地读(Local Read):如果本地处理器读取处于 I 状态的缓存行,很明显此缓存没有数据给它。此时分两种情况:(1)其它处理器的缓存里也没有此行数据,则从内存加载数据到此缓存行后,再将它设成 E 状态,表示只有我一家有这条数据,其它处理器都没有;(2)其它处理器的缓存有此行数据,则将此缓存行的状态设为 S 状态。(备注:如果处于M状态的缓存行,再由本地处理器写入/读出,状态是不会改变的)

远程读(Remote Read):假设我们有两个处理器 c1 和 c2,如果 c2 需要读另外一个处理器 c1 的缓存行内容,c1 需要把它缓存行的内容通过内存控制器 (Memory Controller) 发送给 c2,c2 接到后将相应的缓存行状态设为 S。在设置之前,内存也得从总线上得到这份数据并保存。

远程写(Remote Write):其实确切地说不是远程写,而是 c2 得到 c1 的数据后,不是为了读,而是为了写。也算是本地写,只是 c1 也拥有这份数据的拷贝,这该怎么办呢?c2 将发出一个 RFO (Request For Owner) 请求,它需要拥有这行数据的权限,其它处理器的相应缓存行设为 I,除了它自已,谁不能动这行数据。这保证了数据的安全,同时处理 RFO 请求以及设置I的过程将给写操作带来很大的性能消耗。

缓存行

​ CPU缓存是以缓存行(cache line)为单位存储的。缓存行通常是 64 字节,并且它有效地引用主内存中的一块地址。一个 Java 的 long 类型是 8 字节,因此在一个缓存行中可以存 8 个 long 类型的变量。所以,如果你访问一个 long 数组,当数组中的一个值被加载到缓存中,它会额外加载另外 7 个,以致你能非常快地遍历这个数组。事实上,你可以非常快速的遍历在连续的内存块中分配的任意数据结构。而如果你在数据结构中的项在内存中不是彼此相邻的(如链表),你将得不到免费缓存加载所带来的优势,并且在这些数据结构中的每一个项都可能会出现缓存未命中。下图是一个CPU缓存行的示意图:

上图中,一个运行在处理器 core1上的线程想要更新变量 X 的值,同时另外一个运行在处理器 core2 上的线程想要更新变量 Y 的值。但是,这两个频繁改动的变量都处于同一条缓存行。两个线程就会轮番发送 RFO 消息,占得此缓存行的拥有权。当 core1 取得了拥有权开始更新 X,则 core2 对应的缓存行需要设为 I 状态。当 core2 取得了拥有权开始更新 Y,则 core1 对应的缓存行需要设为 I 状态(失效态)。轮番夺取拥有权不但带来大量的 RFO 消息,而且如果某个线程需要读此行数据时,L1 和 L2 缓存上都是失效数据,只有 L3 缓存上是同步好的数据。从前一篇我们知道,读 L3 的数据非常影响性能。更坏的情况是跨槽读取,L3 都要 miss,只能从内存上加载。

表面上 X 和 Y 都是被独立线程操作的,而且两操作之间也没有任何关系。只不过它们共享了一个缓存行,但所有竞争冲突都是来源于共享。

什么是伪共享

​ 计算机系统中为了解决主内存与CPU运行速度的差距,在CPU与主内存之间添加了一级或者多级高速缓冲存储器(Cache),这个Cache一般是集成到CPU内部的,所以也叫 CPU Cache,如下图是两级cache结构:

Cache内部是按行存储的,其中每一行称为一个cache行,cache行是Cache与主内存进行数据交换的单位,cache行的大小一般为2的幂次数字节。

​ 当CPU访问某一个变量时候,首先会去看CPU Cache内是否有该变量,如果有则直接从中获取,否者就去主内存里面获取该变量,然后把该变量所在内存区域的一个Cache行大小的内存拷贝到Cache(cache行是Cache与主内存进行数据交换的单位)。由于存放到Cache行的的是内存块而不是单个变量,所以可能会把多个变量存放到了一个cache行。当多个线程同时修改一个缓存行里面的多个变量时候,由于同时只能有一个线程操作缓存行,所以相比每个变量放到一个缓存行性能会有所下降,这就是伪共享。

​ 如上图变量x,y同时被放到了CPU的一级和二级缓存,当线程1使用CPU1对变量x进行更新时候,首先会修改cpu1的一级缓存变量x所在缓存行,这时候缓存一致性协议会导致cpu2中变量x对应的缓存行失效,那么线程2写入变量x的时候就只能去二级缓存去查找,这就破坏了一级缓存,而一级缓存比二级缓存更快。更坏的情况下如果cpu只有一级缓存,那么会导致频繁的直接访问主内存。

为何会出现伪共享

​ 伪共享的产生是因为多个变量被放入了一个缓存行,并且多个线程同时去写入缓存行中不同变量。那么为何多个变量会被放入一个缓存行那。其实是因为Cache与内存交换数据的单位就是Cache,当CPU要访问的变量没有在Cache命中时候,根据程序运行的局部性原理会把该变量在内存中大小为Cache行的内存放如缓存行。

1
2
3
4
long a;
long b;
long c;
long d;

​ 如上代码,声明了四个long变量,假设cache行的大小为32个字节,那么当cpu访问变量a时候发现该变量没有在cache命中,那么就会去主内存把变量a以及内存地址附近的b,c,d放入缓存行。也就是地址连续的多个变量才有可能会被放到一个缓存行中,当创建数组时候,数组里面的多个元素就会被放入到同一个缓存行。那么单线程下多个变量放入缓存行对性能有影响?其实正常情况下单线程访问时候由于数组元素被放入到了一个或者多个cache行对代码执行是有利的,因为数据都在缓存中,代码执行会更快。

评论